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Abstract

The health impacts of the BP oil spill are yet to be further revealed as the toxicological effects of 

oil products and dispersants on human respiratory system may be latent and complex, and hence 

difficult to study and follow up. Here we performed RNA-seq analyses of a system of human 

airway epithelial cells treated with the BP crude oil and/or dispersants Corexit 9500 and Corexit 

9527 that were used to help break up the oil spill. Based on the RNA-seq data, we then 

systemically analyzed the transcriptomic perturbations of the cells at the KEGG pathway level 

using two pathway-based analysis tools, GAGE (generally applicable gene set enrichment) and 

GSNCA (Gene Sets Net Correlations Analysis). Our results suggested a pattern of change towards 

carcinogenesis for the treated cells marked by upregulation of ribosomal biosynthesis (hsa03008) 

(p = 1.97e-13), protein processing (hsa04141) (p = 4.09e-7), Wnt signaling (hsa04310) (p = 

6.76e-3), neurotrophin signaling (hsa04722) (p = 7.73e-3) and insulin signaling (hsa04910) (p = 

1.16e-2) pathways under the dispersant Corexit 9527 treatment, as identified by GAGE analysis. 

Furthermore, through GSNCA analysis, we identified gene co-expression changes for several 

KEGG cancer pathways, including small cell lung cancer pathway (hsa05222, p = 9.99e-5), under 
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various treatments of oil/dispersant, especially the mixture of oil and Corexit 9527. Overall, our 

results suggested carcinogenic effects of dispersants (in particular Corexit 9527) and their 

mixtures with the BP crude oil, and provided further support for more stringent safety precautions 

and regulations for operations involving long-term respiratory exposure to oil and dispersants.
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Introduction

The year 2016 marked the sixth anniversary of the Deepwater Horizon oil spill, the largest 

man-made disaster in the history of petroleum industry. The sheer scale of this disaster is 

marked by its long duration (lasting for ~3 months), the gigantic volume of crude oil (210 

million gallons) spilled and dispersants (1.8 million gallons) applied and the large number of 

workers (>50,000) involved in the cleaning operation (Hayworth and Clement 2012; 

Kujawinski et al. 2011).

The full impacts of the disaster to the environment and marine and human lives have yet to 

be fully unveiled. Specifically, the long term health impacts of the BP oil spill to the >50,000 

workers involved in the cleaning operation have not been well characterized and followed 

up, although limited data on other smaller scale oil spills (e.g., the Prestige oil spill) did 

suggest that involvement in oil spill cleaning operations may cause persistent respiratory 

symptoms (Zock et al. 2012), long-lasting airway oxidative stress (Rodriguez-Trigo et al. 
2010), and systemic genetic effects (Laffon et al. 2006; Perez-Cadahia et al. 2007; Perez-

Cadahia et al. 2008a; Perez-Cadahia et al. 2008b). In addition, the oil-dispersant mixtures 

may contain potentially mutagenic/carcinogenic chemicals including PAH, benzene, and 

benzene derivatives (Rodrigues et al. 2010; Saeed and Al-Mutairi 1999). More importantly, 

chemical components in the mixtures may enhance each other to induce harmful effects 

synergistically. The mechanism for inhalation of hazardous substances during the oil spill 

was also proposed through models where inhalable aerosols that contain dispersed oil can be 

formed on the sea surface (Ehrenhauser et al. 2014; Middlebrook et al. 2012).

To characterize the effects and mechanisms of oil spill to human lung health at the molecular 

level, we hypothesize that oil spill chemicals (i.e., oil, dispersant, or their mixtures) may 

have significant effects on respiratory cells, which can be detected at the transcriptomic 

level. To test this hypothesis, we performed an RNA-seq study of human airway epithelial 

cells treated with BP crude oil, oil dispersants (Corexit 9500 and 9527) and their mixtures 

(Liu et al. 2016). Through that study we identified a large number of genes differentially 

expressed due to the treatments, suggesting significant transcriptomic perturbations of the 

cells caused by the toxicological effects of the oil and oil cleaning chemicals. The findings 

provided a strong support to our hypothesis. Furthermore, by annotating the differentially 

expressed genes using DAVID analysis (Dennis, Jr. et al. 2003), our study (Liu et al. 2016) 

suggested several key biological processes affected by the chemicals, including degradation 

of the cell junction, enhanced immune response, decreased local steroid biosynthesis and 
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enhanced angiogenesis. These identified biological processes are consistent with some of the 

pathological features for several common lung diseases, such as COPD (Faner et al. 2013; 

Holtzman et al. 2014), asthma (Ribatti et al. 2009) and cystic fibrosis (Georas and Rezaee 

2014; Heijink et al. 2014; Rezaee and Georas 2014). Therefore our study (Liu et al. 2016) 

not only detected the existence but also preliminarily characterized potential molecular 

mechanisms for the toxicological effects of oil and oil cleaning chemicals. Overall our 

findings (Liu et al. 2016) provided compelling evidence for the potential lung health impact 

of the BP oil spill on those workers involved in the cleaning operation.

One of the key limitations of our previous study (Liu et al. 2016) is that the analysis was 

largely performed at single gene level. Although we did perform analysis at the level of GO 

functional terms, the analysis was still based on the results from single gene differential 

expression analysis. For example, only those genes that achieved a p value of <0.05 in single 

gene differential expression analysis were submitted to GO analysis. Such a p value 

threshold, although commonly used, may be arbitrary in a genomic study as those genes that 

did not achieve the p value <0.05 may also contribute to the effects of biological 

significance. Hence annotation based only on those genes with a small p value may lose 

some sensitivity to capture the key signatures of the toxicological effects on the cells. 

Furthermore, genes often work correlatively and collaboratively in pathways and functional 

modules. Differential expression analysis at the single gene level as in our previous study 

(Liu et al. 2016) ignored such correlative relationship, which again may have missed some 

important transcriptomics signatures and failed to capture some key functional variations of 

the transcriptome.

To alleviate the problems/limitations of our previous study and take full advantage of this 

valuable RNA-seq dataset (Liu et al. 2016), here we performed a KEGG pathway-based 

analysis using the two well-developed software packages, GAGE (generally applicable gene 

set enrichment) (Luo et al. 2009) and GSNCA (Gene Sets Net Correlations Analysis) 

(Rahmatallah et al. 2014). While the findings from our new analysis agree with some of the 

previous study (Liu et al. 2016), the findings provided distinct new clues. A number of 

pathways, including ribosomal biosynthesis, protein processing, Wnt signaling, neurotrophin 

signaling and insulin signaling pathways, were all upregulated at the whole pathway level 

(mainly by the dispersant 9527). Importantly, upregulation of these pathways was all closely 

related with cancers, including lung cancer, in previous molecular and epidemiological 

studies (Mazieres et al. 2005; Poloz and Stambolic 2015; Prakash et al. 2010; Zhou et al. 
2015). Moreover, by GSNCA analysis (Rahmatallah et al. 2014), we further identified a 

number of cancer-related pathways, including the small cell lung cancer pathway, whose 

gene co-expression was changed due to the exposure to the oil/dispersant treatment, 

especially the mixture of dispersant 9527 and oil. Overall, our study here by analyzing the 

transcriptomics signals at the KEGG pathway level has revealed potential carcinogenic 

effects of dispersant 9527 and its mixture with crude oil. The findings provided further 

evidence for the health hazards of oil and oil dispersants to the respiratory system.
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Methods

Experimental methods

The methods for generating the RNA-seq data were detailed in our previous study (Liu et al. 
2016). Briefly, human airway epithelial cells (BEAS-2B cells, ATCC® CRL-9609™) were 

grown under six treatments using WAF (water accommodated fraction) of the following, i.e., 

the BP crude oil (abbreviated as “oil”), dispersant Corexit 9500 (abbreviated as “9500”), 

dispersant Corexit 9527 (abbreviated as “9527”), the mixture of oil + 9500 (abbreviated as 

“oil+9500”), the mixture of oil + 9527 (abbreviated as “oil+9527”), and water (abbreviated 

as “control”). There were three cell samples (biological replicates) for each treatment and 

total RNA extraction followed by RNA-seq experiments was performed on each sample. The 

RNA-seq experiments were performed at Omega Bioservices (Norcross, GA). The RNA-seq 

data was submitted to GEO under the accession number (GSE70909). Differential 

expression analysis was performed between each of the first five treatment groups vs. the 

control group.

The BP crude oil was kindly provided by The Architecture, Engineering, Consulting, 

Operations and Management Company (AECOM, Los Angeles, CA). This oil was obtained 

from the site of the Macondo well during the BP Oil Spill disaster. Commercially available 

Corexit EC9500A and EC9527 dispersants were kindly provided by a contract between 

Nalco/Exxon Energy Chemicals, L.P. (Sugar Land, TX, USA) and Tulane University (New 

Orleans, USA). The dispersants were provided as liquid solutions ready for use.

GAGE analysis

Following the Bioconductor workflow http://www.bioconductor.org/help/workflows/

rnaseqGene/, the raw RNA-seq data (GSE70909) was analyzed to generate the raw count 

matrix, based on which, we used DESeq2 (Love et al. 2014) to perform differential 

expression analysis between a treatment (e.g., oil) and the control.

DESeq2 package requires “raw” counts of sequencing reads as the starting point for 

differential expression analysis (Love et al. 2014). Therefore, before submitted to the 

program for analysis, the count matrix was not normalized (which is explicitly required by 

the software) (Love et al. 2014). However, during the analysis procedures of DESeq2, 

normalization did occur in the modeling process, where the read count for gene i and sample 

j was modeled as a negative binomial distribution with mean μij and dispersion αj, and μij = 

sijqij where qij is the raw read count and sij is a size factor that normalizes differences in 

sequencing depth between samples and other sources of technical biases, such as GC content 

and gene length (Love et al. 2014). The size factor sij was estimated with the 

“estimateSizeFactor()” function and the dispersion αj estimated with the “DESeq()” 

function.

We ran the “DESeqDataSetFromMatrix” function, with the count matrix for all 18 samples 

(3 for each of the 5 treatments and 3 for the control) and the design matrix as input data, 

which produced an R object for the downstream differential expression analysis. Including 

count data for all the 18 samples (rather than only 3 samples from a treatment and the 3 

control samples) is more robust for estimating parameters (such as the size factor and 

Liu et al. Page 4

Gene. Author manuscript; available in PMC 2018 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.bioconductor.org/help/workflows/rnaseqGene/
http://www.bioconductor.org/help/workflows/rnaseqGene/


dispersion). For differential expression analysis to compare a certain treatment with the 

control, we used “contrast()” function, e.g., by defining “contrast = c (“treatment”, “oil”, 

“control”)”. The result file that contain p values and fold changes for each gene was 

generated with the “results()” function.

The log2 fold changes for all the genes from the differential expression analysis (which is a 

column in the result file) were submitted as an input file for GAGE analysis (Luo et al. 
2009). Note that we submitted the log2 fold changes for all the genes, not just those genes 

that achieved a certain significant p values (such as p < 0.05). GAGE (Luo et al. 2009) then 

uses the information of fold change for each gene to obtain mean and standard deviation of 

fold changes for a gene set (pathway) as well as for the background (the whole 

transcriptome) and generate a t test statistic and p value for a comparison in fold change 

between a gene set and the background. Essentially, if there is significant difference in fold 

change between a gene set and the background, an extreme t statistic and a small p value 

will be achieved. As the fold change involves information on up- or downregulation (i.e., 

fold change >1 for up- and <1 for downregulation), a pathway identified by GAGE will also 

be indicated as up- or downregulated. As a nice feature of GAGE, a KEGG pathway 

identified as significantly differentially expressed can be visualized in a KEGG pathway plot 

using PathView (Luo and Brouwer 2013), where an upregulated gene will be shown in red 

and a downregulated gene in green and an unregulated gene in grey (Figure 1). Therefore, if, 

for example, in a pathway plot, the majority of genes are shown in red, the pathway’s 

upregulation can be visually assessed (Figure 1).

GSNCA analysis

GSNCA (Rahmatallah et al. 2014) offers multivariate nonparametric statistical methods 

testing difference in correlation structure of a gene set (pathway) between two conditions. 

As a key feature, GSNCA quantitatively characterizes the importance of each gene in a 

correlation network, assigning each gene a weight (wi for gene i) that is proportional to the 

gene’s cross-correlation with all the other genes. Thus, genes with high cross-correlations 

(e.g., the hub gene) will normally have a high weight that may indicate their regulatory 

importance. Based on cross-correlations among different genes, correlation structure of a 

pathway can be constructed and a statistical test can be performed to test difference of the 

structure in different conditions (e.g., treatment vs. control). The correlation structure for a 

pathway under a specific condition usually features a group of high weight genes (including 

the hub gene), which might suggest the central regulatory roles exerted by these genes.

For GSNCA analysis, we first downloaded gene annotation file from ENSEMBL and 

extracted gene length information. The raw count matrix was filtered to remove rows of zero 

counts and rows of no gene annotations. For each element of the count matrix (each gene 

from each sample), count per million reads (cpm) was calculated to standardize for library 

size and those rows (genes) with a cpm < 0.1 were further removed, followed by calculation 

of rpkm (reads per kilobase per million reads) to further standardize for gene length. KEGG 

pathway list was downloaded and then further partitioned into single KEGG pathway file.

Using the GSAR package (Rahmatallah et al. 2012) we performed GSNCA analysis for each 

of the KEGG pathways (as a single gene set). The analysis is a multivariate differential co-
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expression test that accounts for the correlation structure between genes. The test assigns 

weight factors ws to genes under one condition and adjusts these weights simultaneously 

such that equality is achieved between each genes' weight and the sum of its weighted 

absolute correlations (rij)with other genes in a gene set of p genes

The test statistic WGSNCA is given by the 1st norm of difference between the scaled weight 

vectors w(1) and w(2) (each vector is multiplied by its norm) for the two conditions.

This test statistic was used to test the hypothesis:H0: WGSNCA = 0 vs. H0: WGSNCA ≠ 0. The 

P-values for the test statistic are obtained by comparing the observed value of the test 

statistic to its null distribution, which is estimated using a permutation approach (through 

permuting samples’ class labels). Specifically, the p value is calculated as , where 

b is the number of permutations with a more extreme statistic WGSNCA than the observed 

statistic and nperm is the total number of permutations. For each specific test, we permute 

for 10,000 times, the most significant empirical p value that can be possibly achieved is 

9.99e-5 (meaning that among 10,000 permutations no permutation has achieved a more 

extreme test statistic than the observed one).

Results

From GAGE analysis, we identified 4 KEGG pathways that were downregulated by the oil 

treatment, 7 pathways significantly regulated (including 2 up- and 5 downregulated) by 9500 

treatment, 27 pathways upregulated by the 9527 treatment, and 8 pathways upregulated by 

the 9500 + oil treatment. The results are presented in Table 1. For the statistical criterion of 

significant regulation, we used an FDR q value <0.10 as a cutoff threshold.

With oil treatment, among the most significantly regulated pathways are downregulation of 

actin cytoskeletion (hsa04810) (p = 6.53e-5) and adherens junction (hsa045020) (p = 

9.69e-5) pathways. Treatment with 9500 caused upregulation of ribosome (hsa03010) (p = 

2.22e-11) and antigen processing and presentation (hsa04612) (p = 1.22e-3) and 

downregulation of adherens junction (hsa045020) (p = 1.06e-4) pathways, among the most 

significantly regulated pathways. (Table 1)

The 9527 treatment leads to the largest number of pathways that are significantly regulated 

(with a total of 27 pathways, all upregulated). At the top of the list are the ribosome 

biogenesis (hsa03008) (p = 1.97E-13) and protein processing (hsa04141) pathways. In 

addition, Wnt signaling (hsa04310) (p = 6.76E-3), neurotrophin signaling (hsa04722) (p = 
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7.73e-3) and insulin signaling (hsa04910) (p = 1.16E-02) are also among the upregulated 

pathways.

Overall, in terms of statistical significance, the most significantly upregulated pathways are 

ribosome biogenesis (hsa03008) and ribosome (hsa03010) under 9527, 9500 or 9500+oil 

treatments. The most significantly downregulated pathways are regulation of actin 

cytoskeleton (hsa04810) and adherens junction (hsa04520) induced by oil or 9500 

treatments. As a key feature, a large number of pathways were upregulated under 9527 or 

9500+oil treatments, with the majority of upregulated pathways related to RNA metabolism 

(Table 1).

To illustrate the significance of the two most regulated pathways (hsa03008 and hsa04810) 

mentioned above, we used PathView to visualize the up- (in red color) and downregulation 

(in green color) of each gene in the context of the whole KEGG pathway plots (Figure 1). 

Unregulated genes are shown in grey. If the majority of the colored genes are red/green, then 

that pathway is up/downregulated as a whole. As examples, note the prevailing red color for 

the ribosome biogenesis pathway upregulated by the 9527 treatment (Figure 1B) and the 

prevailing green color for the actin cytoskeleton pathway downregulated by the oil treatment 

(Figure 1A).

Using GAGE (Luo et al. 2009), we also performed differential expression analysis at the GO 

level to corroborate the KEGG pathway results. The detailed GO terms significantly 

regulated are not presented here due to the large number of terms involved and the space 

limitation. Instead we present the number of regulated terms and some example GO terms in 

Table 2.

The GO results are generally consistent with the KEGG results. The impact of oil treatment 

is featured by downregulation of anchoring junction (GO:0070161) and adherens junction 

(GO:0005912). The 9500 treatment effect is characterized by upregulation of inflammatory 

response (GO:0006954) and innate immune response (GO:0045087), in addition to 

simultaneous downregulation of anchoring junction (GO:0070161) and adhereins junction 

(GO:0005912). 9527 treatment induced the largest significantly regulated GO terms, with 

the vast majority of the terms being upregulated, especially the upregulation of the BP 

(biological process) terms (n = 159), which again features ribosome biogenesis (GO:

0042254), translation (GO:0006412) and the related terms.

Using GSNCA analysis (Rahmatallah et al. 2014), we identified 64 KEGG pathways that 

have differential co-expression patterns (i.e., the between-gene correlation structure) in 

treatment and control groups (Table 3), which achieved a p value of 9.99e-5, the smallest p 

value that can be possibly achieved in 10,000 permutations. This p value is significant even 

after Bonferroni correction for testing a total of 187 KEGG pathways (as the Bonferroni 

corrected significance level is 0.05/186 = 2.67e-4). Many of these pathways overlap with 

those pathways identified by GAGE analysis, such as regulation of actin cytoskeleton 

(hsa04810), endocytosis (hsa04144), antigen processing and presentation (hsa04612) and 

insulin signaling pathway (hsa04910). The most interesting pathways identified that are 

distinct from the GAGE analysis are a number of KEGG pathways related to cancer. These 
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pathways (bolded and italicized in Table 3) include small cell lung cancer (hsa05222), 

pathways in cancer (hsa05200), prostate cancer (hsa05215), endometrial cancer (hsa05213), 

and basal cell carcinoma (hsa05217). Among the treatments, oil+9527 appears to be the one 

most frequently associated with these cancer-related pathways as oil+9527 is either the only 

one or one of the conditions associated with these cancer pathways.

As an example (shown in Figure 2), the major change in the small lung cancer pathway due 

to the oil+9527 treatment is that a number of genes in this pathway that have high or 

medium weights in controls become genes with a very low weight, suggesting the loss of 

their correlative relationship with other genes and their regulatory roles. Under the oil+9527 

treatment, the pathway has hence become functionally dominated by a smaller subset of 

higher weight genes as compared with controls. Using DAVID (Dennis, Jr. et al. 2003) to 

annotate the subset of the higher weight genes produces a top annotation cluster (with an 

enrichment score of 7.27) that contains 8 KEGG cancer pathway terms, e.g., 

hsa05215:Prostate cancer (p = 5.60e-14), hsa05220:Chronic myeloid leukemia (p = 

7.65e-12), hsa05212:Pancreatic cancer (p = 1.61e-10), hsa05223:Non-small cell lung cancer 

(p = 2.85e-07), etc. (note: p values are Bonferroni corrected p values). In contrast, if we 

annotate those lower weight genes with DAVID (Dennis, Jr. et al. 2003), the top annotation 

cluster (with an enrichment score of 4.95) does not contain cancer terms. These results 

suggest that under the oil+9527 treatment the pathway is now functionally shifted to a 

smaller set of genes that are further more enriched with cancer pathways.

Overall, at the whole KEGG pathway level, the most pronounced regulated pathways are 

ribosomal biosynthesis and its related pathways. Gene co-expression changes were also 

observed for a number of cancer pathways, most relevantly, the small cell lung cancer 

pathway. While 9527 treatment has the largest number of pathways significantly regulated, 

including not only ribosomal biosynthesis but also several signaling pathways, such as Wnt 

signaling, 9527 + oil appears to be the most common treatment to change gene co-

expression patterns of cancer related pathways. Therefore, the overall effects appear to be 

most pronounced and enriched for 9527 and 9527+oil treatments.

Discussion

In this study, we performed pathway-based analysis on RNA-seq data of the human airway 

epithelial cells treated with oil and dispersants 9500 and 9527. Pathway-based analysis of 

gene expression data is more informative and biologically meaningful than individual gene 

based analysis since very often genes work correlatively and orchestrally as a “team” (a 

functional module or a functional pathway). For some genes, their moderate changes of 

expression at the individual gene level may be insignificant under single gene statistical 

analysis framework yet they may be part of a biologically significant process by contributing 

to the process in an orchestrated manner. In such case, it is more reasonable that the 

analytical unit for gene expression analysis be a group of (functionally related) genes rather 

than individual transcripts. Statistically speaking, it can also alleviate effectively the 

common problem of multiple testing and “winner’s curse” (Ioannidis 2008) in a genomic 

study. Therefore, here we used GAGE (Luo et al. 2009) to identify differential expression at 

the whole pathway level due to oil and/or dispersant treatments.
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Given the intrinsic correlation among the genes in a pathway, sometime a pathway is not up 

or down-regulated at the whole pathway level but may change in a more delicate manner, 

which is the alteration of the inner correlative structure or the co-expression patterns. For 

example, under certain conditions, some genes (e.g., the so called hub genes) that have a 

large number of correlative relationships with other members of a pathway may lose the 

“network hub” status and be replaced by other genes as new hubs. If that happens, the 

pathway’s function may also changes as the regulatory roles asserted by different hub genes 

may be different. Here we used GSNCA (Rahmatallah et al. 2014) to capture such delicate 

changes at the whole pathway level and identified a large number of pathways with changed 

co-expression patterns under the oil and/or dispersant treatments.

Some of the results from the present study are consistent with what our previous study 

reported (Liu et al. 2016) based on individual genes. For instance, downregulation of the cell 

junction (e.g., adherens junction and anchoring junction) and upregulation of inflammatory 

response and immune response due to oil and/or dispersants treatment were observed in both 

studies. These findings again indicated the potential detrimental effects on cellular structure 

integrity and activation of immune response by the oil/dispersant treatment, lending 

mechanistic support for the observed respiratory symptoms in workers involved in previous 

oil cleaning operations (Zock et al. 2012).

However, the key distinct features observed in this study are upregulated ribosomal 

biosynthesis, protein processing, Wnt signaling, neurotrophin signaling and insulin signaling 

pathways upon treatment with the dispersant 9527. Importantly the observation of such a 

coordinated upregulation of these pathways may indicate a tendency towards cancer 

development for the cells.

Increased ribosomal biosynthesis has been linked to oncogenic signals. For example, a study 

showed that c-Myc oncogenic activity required robust ribosome biogenesis and protein 

synthesis and when the upregulated protein synthesis was reduced to normal level by 

deleting one allele of RPL24 (Ribosomal Protein L24), the oncogenic potential of c-Myc 

was markedly abolished (Barna et al. 2008). Several tumor suppressors, such as RB and 

p130, inhibit tumor cell growth and proliferation by interfering with ribosome biogenesis 

and thus restricting global protein synthesis (Cavanaugh et al. 1995; Ciarmatori et al. 2001; 

Hannan et al. 2000). Ribosomal biosynthesis pathway has been proposed as a potential 

target for cancer treatment (Zhou et al. 2015).

Activation of Wnt signaling pathway was associated with lung cancer development 

(Mazieres et al. 2005; Stewart 2014) and inhibition of Wnt signaling was shown to inhibit 

lung cancer cell growth both in vitro and in vivo (Kim et al. 2007). Neutrotropin signaling 

has also been shown to promote lung cancer development (Prakash et al. 2010) as high 

levels of TrkA and TrkB have been found in human lung adenocarcinoma and squamous cell 

carcinomas (Ricci et al. 2001), and TrkB has been found in small cell lung cancers and 

atypical carcinoids (Ricci et al. 2005).

Insulin signaling has been well known for its crucial role in cancer development (as 

reviewed in (Poloz and Stambolic 2015)), including lung cancer (Dziadziuszko et al. 2008; 
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Ferguson et al. 2012; Frisch et al. 2015). Hyperinsulinemia is linked to the development of 

lung cancer (Ferguson et al. 2012) as well as other types of cancers (Calle et al. 2003; 

Goodwin et al. 2002; Renehan et al. 2008; Stewart et al. 2009). Insulin signaling through 

insulin receptor A has direct oncogenic and anti-apoptotic effects on cancer cells (Cox et al. 
2009; Frasca et al. 1999; Kalli et al. 2002; Law et al. 2008; Novosyadlyy et al. 2010; Papa et 
al. 1990). Insulin signaling has also been a target for cancer treatment as hyperinsulinemia 

drugs, such as metformin, have proven to be valuable for cancer therapy (Bosco et al. 2011; 

Evans et al. 2005; Goodwin et al. 2011; Vissers et al. 2015).

Through GSNCA analysis we also identified several cancer-related pathways, including 

small cell lung cancer pathway, which have gene co-expression changes due to oil/dispersant 

treatment. For example, under oil+9527 treatment, the higher weight genes (those with more 

important regulatory roles) were reduced to a smaller subset of genes that are further 

enriched for cancer development (Figure 2).

Not surprisingly, our findings indicate that exposure to Corexit 9527-oil mixture has the 

most nocive effect on cells with significant upregulation of cancer pathways. The toxic effect 

of Corexit 9527 has been previously established. In particular, Corexit 9527 contains the 

toxin 2-Butoxyethanol (NIH US National Library of Medicine Toxicology Data Network 

https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+7838) that was 

shown to cause liver, kidney, lung, nervous system, and blood disorders among cleanup 

crews in Alaska following the 1989 Exxon Valdez oil spill (http://www.takepart.com/article/

2013/04/17/corexit-deepwater-horizon-oil-spill). Although approved by the EPA, 

formulations of Corexit 9500 and 9527 were banned from use in the United Kingdom in 

1998 because laboratory tests found them harmful to marine life that inhabits rocky shores 

(http://www.biologicaldiversity.org/programs/public_lands/energy/

dirty_energy_development/oil_and_ga s/gulf_oil_spill/dispersants.html). Regardless of the 

risks, these dispersants were still used in the BP oil spill site, and by June 1 2010, 800,000 to 

900,000 gallons of Corexit 9527 had already been sprayed (https://www.whistleblower.org/

gulftruth).

The above findings, both from differential expression analysis at the pathway level using 

GAGE (Luo et al. 2009) and from gene co-expression analysis using GSNCA (Rahmatallah 

et al. 2014), suggest a significant pattern of change towards cancer development in human 

airway epithelial cells under oil/dispersant treatment, especially the 9527 treatment. This, 

together with our previous study (Liu et al. 2016), provides compelling evidence for the 

toxicological effects, especially carcinogenic effects, of oil and dispersants and further 

reveals the potential health impacts of the recent BP oil spill on the lung health for those 

workers involved in the rescue mission. Accordingly, more strict regulations should be 

established to protect the personnel routinely working on the sites of oil spill and even those 

working in the refineries who may be exposed to oil products on a daily basis. Precautions 

should also be exercised on using oil dispersants, especially the Corexit 9527, to contain an 

oil spill in the future.
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Figure 1. 
Downregulation of actin cytoskeleton by oil treatment and upregulation of ribosome 

biogenesis by 9527 treatment

Note:

A: Downregulation of actin cytoskeleton by oil treatment

B: Upregulation of ribosome biogenesis by 9527 treatment
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Figure 2. 
Gene co-expression change of small cell lung cancer pathway under oil+9527 treatment

Note:

DAVID (Dennis, Jr. et al. 2003) annotation for the high weight genes resulted in the top 

annotation cluster (with an enrichment score of 7.27) that contains 8 KEGG cancer 

pathways, e.g., hsa05215:Prostate cancer (p = 5.60E-14), hsa05220:Chronic myeloid 

leukemia (p = 7.65E-12), hsa05212:Pancreatic cancer (p = 1.61E-10), hsa05223:Non-small 

cell lung cancer (p = 2.85E-07), etc. (note: p values are Bonferroni corrected p values), 

suggesting that the high weight genes are highly enriched for these cancer pathways.

In contrast, DAVID (Dennis, Jr. et al. 2003) annotation for the low weight genes resulted in 

the top annotation cluster (with an enrichment score of 4.95) that does not contain cancer 

terms.

The difference in annotation results may indicate that under treatment of oil+9527 this 

pathway’s regulatory genes (as manifested by those high weight genes) are more 

concentrated to a subset of genes highly enriched for cancer development.
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Table 1

KEGG pathways significantly regulated by oil and/or dispersants

KEGG pathway name P value FDR Treatment group Up or down-regulated by treatment

hsa04810 Regulation of actin cytoskeleton 6.53E-05 5.97E-03 Oil Downregulated

hsa04520 Adherens junction 9.69E-05 5.97E-03 Downregulated

hsa04144 Endocytosis 1.11E-04 5.97E-03 Downregulated

hsa03015 mRNA surveillance pathway 1.61E-03 6.51E-02 Downregulated

hsa03010 Ribosome 2.22E-11 3.60E-09 9500 Upregulated

hsa04612 Antigen processing and presentation 1.22E-03 9.91E-02 Upregulated

hsa04520 Adherens junction 1.06E-04 1.72E-02 Downregulated

hsa00900 Terpenoid backbone biosynthesis 1.84E-03 9.55E-02 Downregulated

hsa04144 Endocytosis 1.95E-03 9.55E-02 Downregulated

hsa03015 mRNA surveillance pathway 2.37E-03 9.55E-02 Downregulated

hsa04810 Regulation of actin cytoskeleton 2.95E-03 9.55E-02 Downregulated

hsa03008 Ribosome biogenesis in eukaryotes 1.97E-13 3.20E-11 9527 Upregulated

hsa03013 RNA transport 2.03E-09 1.64E-07 Upregulated

hsa00970 Aminoacyl-tRNA biosynthesis 3.42E-07 1.66E-05 Upregulated

hsa04141 Protein processing in endoplasmic reticulum 4.09E-07 1.66E-05 Upregulated

hsa03040 Spliceosome 6.09E-07 1.97E-05 Upregulated

hsa03050 Proteasome 4.66E-05 1.26E-03 Upregulated

hsa00240 Pyrimidine metabolism 6.59E-05 1.53E-03 Upregulated

hsa04120 Ubiquitin mediated proteolysis 1.01E-04 2.05E-03 Upregulated

hsa03018 RNA degradation 1.64E-04 2.95E-03 Upregulated

hsa00020 Citrate cycle (TCA cycle) 2.22E-04 3.59E-03 Upregulated

hsa03015 mRNA surveillance pathway 4.09E-04 5.53E-03 Upregulated

hsa04110 Cell cycle 4.10E-04 5.53E-03 Upregulated

hsa04114 Oocyte meiosis 6.65E-04 8.29E-03 Upregulated

hsa00230 Purine metabolism 7.65E-04 8.85E-03 Upregulated

hsa03010 Ribosome 1.07E-03 1.15E-02 Upregulated

hsa03022 Basal transcription factors 1.34E-03 1.35E-02 Upregulated

hsa03020 RNA polymerase 1.75E-03 1.67E-02 Upregulated

hsa00520 Amino sugar and nucleotide sugar metabolism 6.48E-03 5.77E-02 Upregulated

hsa04310 Wnt signaling pathway 6.76E-03 5.77E-02 Upregulated

hsa04722 Neurotrophin signaling pathway 7.73E-03 6.27E-02 Upregulated

hsa04914 Progesterone-mediated oocyte maturation 8.47E-03 6.54E-02 Upregulated

hsa00010 Glycolysis / Gluconeogenesis 1.05E-02 7.71E-02 Upregulated

hsa04910 Insulin signaling pathway 1.16E-02 8.16E-02 Upregulated

hsa00290 Valine, leucine and isoleucine biosynthesis 1.37E-02 9.22E-02 Upregulated

hsa03008 Ribosome biogenesis in eukaryotes 6.17E-11 1.00E-08 9500+oil Upregulated

hsa00970 Aminoacyl-tRNA biosynthesis 1.11E-07 8.98E-06 Upregulated

hsa03013 RNA transport 3.02E-07 1.63E-05 Upregulated
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KEGG pathway name P value FDR Treatment group Up or down-regulated by treatment

hsa03010 Ribosome 1.53E-05 6.18E-04 Upregulated

hsa03040 Spliceosome 1.81E-04 5.86E-03 Upregulated

hsa03018 RNA degradation 3.12E-04 8.41E-03 Upregulated

hsa03050 Proteasome 9.20E-04 2.13E-02 Upregulated

hsa04141 Protein processing in endoplasmic reticulum 4.00E-03 8.11E-02
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Table 3

GSNCA analysis results

KEGG pathways with a significant p value (p = 9.99e-5) Treatments associated with the co- expression changes of a pathway

ABC transporters 9500, oil +9527

Antigen processing and presentation 9527

Arginine and proline metabolism 9527

Axon guidance Oil, 9500, oil +9500,oil +9527

B cell receptor signaling pathway oil +9527

Basal cell carcinoma oil +9527

Basal transcription factors oil +9527

Butanoate metabolism oil +9527

Cell adhesion molecules CAMS 9500, 9527

Cytokine cytokine receptor interaction 9500

Cytosolic DNA sensing pathway Oil

Drug metabolism other enzymes 9500

ECM receptor interaction Oil, 9527, oil +9500, oil +9527

Endocytosis 9527, oil +9527

Endometrial cancer oil +9527

Epithelial cell signaling in helicobacter pylori infection oil +9527

Fc epsilon RI signaling pathway Oil, 9527

Fc gamma R mediated phagocytosis 9500

Focal adhesion Oil, 9500, oil +9500, oil +9527

Fructose and mannose metabolism oil +9500, oil +9527

Gap junction 9500, oil +9500

Glycerolipid metabolism 9500

Glycosaminoglycan biosynthesis chondroitin sulfate 9527

Graft versus host disease oil

Hedgehog signaling pathway 9500, oil +9500, oil +9527

Hematopoietic cell lineage Oil, oil +9500, oil +9527

Histidine metabolism Oil

Homologous recombination Oil

Insulin signaling pathway 9527

Intestinal immune network for IGA production Oil, 9500, oil +9527

Jak-Stat signaling pathway Oil

Leukocyte transendothelial migration 9500

Lysine degradation oil +9527

MAPK signaling pathway Oil, oil +9500

Mismatch repair oil +9527

Natural killer cell mediated cytotoxicity Oil, oil +9500, oil +9527

Neuroactive ligand receptor interaction Oil, 9500, 9527, oil +9500, oil +9527

Notch signaling pathway Oil

Oxidative phosphorylation Oil

Gene. Author manuscript; available in PMC 2018 February 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 21

KEGG pathways with a significant p value (p = 9.99e-5) Treatments associated with the co- expression changes of a pathway

P53 signaling pathway 9527

Pathways in cancer Oil, 9500, oil +9500, oil +9527

Phosphatidylinositol signaling system 9500, oil+9500

PPAR signaling pathway Oil, oil +9500

Primary immunodeficiency oil +9527

Prostate cancer oil +9527

Proximal tubule bicarbonate reclamation oil +9500

Pyrimidine metabolism Oil

Regulation of actin cytoskeleton 9500, oil +9500, oil +9527

Regulation of autophagy 9500

Selenoamino acid metabolism Oil

Small cell lung cancer Oil, oil +9527

Snare interactions in vesicular transport Oil

T cell receptor signaling pathway 9500, 9527, oil +9500, oil +9527

Terpenoid backbone biosynthesis Oil, oil +9527

TGF beta signaling pathway Oil

Tight junction Oil, 9500

Toll like receptor signaling pathway Oil, 9500, 9527

Tryptophan metabolism Oil

Type II diabetes mellitus 9500

Tyrosine metabolism Oil

Ubiquitin mediated proteolysis oil +9527

Valine leucine and isoleucine degradation 9500

Vascular smooth muscle contraction 9500, 9527, oil +9527

VEGF signaling pathway oil +9527
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